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Two alternatives. 1. Classic continuum with boundary conditions on the 

internal surfaces. 2. Another continuum model, where integral 

geometry of pore space there is in origin.

The element of a structured body with an

average distance       between pores.
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The problem of creation of equilibrium equation 

into arbitrary element of discrete medium 
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The translated forces is fieling all space including pores and cracks
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The difference of the first order is given by

Expression tends to the first derivative at l0→0. Analogously the second difference 

may be written as
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Expression  in (5) tends to the second derivative at l0→0. The similar 

operator of translation in three-dimension space for some sphere is given by 

expression
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Expression  tends to the second derivative at l0→0. The similar operator of 

translation in three-dimension space for some sphere is given by expression
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According to Poisson formula  we have 
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so the operator P may be rewritten as follows
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The equation of motion in blocked media
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P=E corresponds to classic continuum 

model by Cauchy and Poisson



For one dimensional case equation takes more simple expression: 
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Small scale



More large scale



Seismological law of Gutenberg–Richter 01
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Left. Theoretical dependence of complex roots number versus cracks specific 

surface. Tangent of the angle γ = 0.5. It is clearly visible non-uniqueness of 

solutions with the great energies.

Right. Experimental dependence   seismic events numbers versus energy, which 

is proportional to cracks specific surface. Tangent of the angle γ = 0.5 – 0.52



Real shear cracking process (right hand) without of sufficient 

crack opening corresponds to Richter-Gutenberg law



Gamma distribution of random value l0



Gamma-distribution of sizes of random 

structures.
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P-operator for random size of structure l0

Dispersion equation for random structures
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We returned to usual dispersion equation 



Equation of equilibrium at whole and 

equation of motion in micro-scale 

i.e. at small variance of blocks sizes ( z=x+iy)

Waves due to staticsat 300α =

Z X≈

X=kl0

Z=ksl0

Red color-fast catastrophes, green color-damping scenarios, 

blue points mean oscillations. Z~X means fast process, 

Z<<X means slow wave process.



Waves due to staticsat 

i.e.at large variance of blocks es
5
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α =

Red color-slow catastrophes, green color-damping scenarios, 

blue points mean oscillations. Z~X means fast process, 

Z<<X means slow wave process.



Waves due to statics at  with friction 300 pδ=0.01α =
Small variance of blocks sizes



Waves due to statics at  with friction 300 pδ=0.05α =

Small variance of blocks sizes



Large variance of blocks sizes.



ε

σ

0
ε

Stress-strain diagram. The nonlinear loading and linear unloading



Equation of motion in long wave approach
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Are  values of more small order

Weak nonlinearity and dispersion
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( )F ϕ ξ′ =Assuming We have nonlinear equation
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It accurate solution is
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φ0→0This solution tends in limit

To usual sinusoidal curve, while a common solution of nonlinear 

equation describes more wide class of phenomena
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The whole point is that  in denominator there is very small value
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The attenuation with distance due to nonlinearity. 

The nonlinear parameter 0.1
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